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SUMMARY 

The Boundary Element Method is now well established as a valid numerical technique for the solution 
of field problems, equal to the Finite Element Method in generality and surpassing it in computational 
efficiency in some cases.’ In this paper is presented a ‘Regular Boundary Element Method’ as applied 
to inviscid laminar fluid flow problems. It involves the formation of a system of regular integral 
equations obtained by moving the singularity outside the domain of the given problem. It is also shown 
that non-conforming elements may be used whereby freedoms are not defined at the geometric nodes 
under the boundary element discretization. A linear element is developed here; higher order variants 
could easily be defined. Satisfactory numerical results have been obtained using the proposed regular 
method with both conventional (continuous across the boundary) and non-conforming boundary 
elements for two-dimensional inviscid laminar fluid flow problems having regular and singular solu- 
tions. 
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INTRODUCTION 

The Boundary Element Method has evolved slowly over more than a decade but until 
recently it has not received widespread attention. A basic reason for this is that the resulting 
linear algebraic equations are non-symmetric and, on a simple approach, fully populated. In 
consequence, it has not appeared as an attractive competitor to the Finite Element Method. 

However, the abundant success of the Finite Element Method has led to progressively 
more exacting demand upon it. Particularly, whereas previously designers were content with 
a simplified two-dimensional approach, there is now an increasing demand for more detailed 
three-dimensional analyses. This is especially so in high risk contexts, such as nuclear power. 

The increased computing overhead in going from two to three dimensions is considerable 
so that there is some urgency in exploring the methods which may be more efficient than the 
Finite Element Method in three dimensions. Because of the square-cube relation of degrees 
of freedom, any boundary domain method is attractive in this light. 

In its usual form the Boundary Element Method starts from the infinite system of 
boundary integral equations obtained from the governing field equations by appropriate 
integration by parts and employing a fundamental solution as kerneL2 This system is 
truncated to a finite system on selection of a finite number of fundamental solutions and 
discretized after the manner of the Finite Element Method. Non-symmetric, full, linear 
algebraic equations ensue. 
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There are two drawbacks in the method as normally used. Firstly, the singular point of the 
fundamental function is taken on the boundary of the problem, thereby giving a system of 
singular integrals. This raises two problems: 

(1) Not only does the accurate evaluation of these singular integrals require careful and 
special treatment in the neighbourhood of the singular point but it may also contribute 
to relatively higher computational cost. 

(2) The class of problems for which the method is well defined, may be unduly restrictive 
because of divergence of the integrals. 

It has been shown that there is no essential reason for following this approach,’ and that 
the singular point may validly be taken outside the domain of the problem resulting in a 
system of regular integral  equation^.^ 

Secondly, as with Finite Elements, a hierarchy of boundary elements may be defined, 
starting with a constant element and ranging through linear, quadratic elements etc. 
Presumably, in analogy with Finite Elements, inter-element continuity of the unknown 
functions has been imposed in applications. This continuity gives rise to at least three 
problems? 

(1) At a point where the surface is not smooth, the normal is not defined but the freedom 
there demands a valid normal. 

(2) At an interface where there is a change in the nature of boundary conditions (say 
between potential and its derivative) apparently both types of freedoms are con- 
strained. 

(3) When the problem is partitioned into subregions,6 there can be excessive constraint 
where several surfaces meet. 

Accommodation to the second and third problems has been devised by appropriate 
suppression of degrees of freedoms and to the first by the introduction of two freedom nodes 
close to the geometric singularity on either side. The last approach is objectionable since, if 
the nodes are not closely spaced the boundary integrals are not well discretized whereas if 
they are, the resulting algebraic equations are ill-conditioned. This is because proximity of 
freedom nodes implies linear dependence in the algebraic equations. The root of the 
problem is interelement continuity. This is necessary with Finite Elements7 to ascertain 
positive definiteness of the operator of the governing equations but it is not a requirement in 
the Boundary Element Method. The latter point is amply borne out by the success of 
constant elements. It has been demonstrated that non-conforming elements8 obviate these 
problems.’ 

In this paper the ‘Regular Boundary Integral Equations’ are presented and both conven- 
tional and non-conforming linear boundary elements are used in discretizing the system. Two 
two-dimensional inviscid, laminar, fluid flow problems are examined. The convergence 
behaviour of the approximate solution for a singular problem with regard to mesh densities 
and its sensitivity to location of fundamental solution singularity is appraised. 

THEORY 

Consider a Potential Function (.b over the domain 42, of the given problem which satisfies the 
governing (Laplace’s) equation: 

V2(.b=0 in 42 
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s ,=(+=@ 
Figure 1. Problem definition 

The boundary conditions for the problem are (Figure 1) 

( 4  4 = d, on S1 (Essential condition) 

9 = c)(p on S2 (Natural condition) 
an an  

where the total boundary is given as S = S1 + S2. 

satisfies the governing equation, we can write the weighted residual statement as: 
Introducing a weighting function (b* which has continuous first derivatives and which 

Integrating the Laplacian term of equation (3)  by parts twice, we obtain: 

Assuming a concentrated source at a point i, the governing equation is 

v24*+h '=o  

where k is the Dirac delta function for which, 

+(V24* +A') dS2 = +V2+* dSt + 4' I, b 
If equation ( 5 )  is to be satisfied by the fundamental solution then: 

Jo +(v2<b*) dSt = -#i 

and hence equation (4) becomes: 

If d, and &$/an values are known for respective parts of the boundary, we can write 
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equation (S), in general, for the total boundary as: 

in which 4* is the fundamental solution and c' is the unknown coefficient. 4* for the 

isotropic case in two dimensions is given as c$* = - In (1/1) where I is the distance between 
the source and the point under consideration. 

If the said point i is located outside the domain of the given problem, this coefficient c' 
equals zero and equation (9) becomes: 

1 
2 n  

Equation (10) forms the basis of 'Regular Boundary Integrals' thereby giving a system of 
equations; one for each singular point corresponding to the 'Freedom node' under the 
boundary element discretization and located outside the domain of the problem. These 
Regular Equations can also be obtained when the domain of the given problem is partitioned 
into sub-regions in which case the singular points corresponding to the nodes on the 
interfaces do not lie in the solution zone as the sub-regions are disjoint at the time of setting 
up the equations. 

CONSTANT BOUNDARY ELEMENTS 

The boundary is discretized into N elements (say) and the values of potential and its 
derivative are assumed to be constant on each element, and equal to the value at the 
mid-node of the element. The singular point corresponding to this mid-node i is located at 
an arbitrary distance from i and along the positive normal (Figure 2). 

Equation (10) for this singular point corresponding to the boundary node i becomes in 
discretized from: 

The integrals in equation (11) can be evaluated numerically for all segments over the 
boundary including the one containing node i. N such equations are obtained and solved for 

Mid -node 

Singular point 

2 

Figure 2. Location of singular point for constant boundary element 
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the boundary unknowns. Once the solution over the whole boundary is obtained the interior 
solution can be generated using equation (9) with c' equal to unity. 

LINEAR BOUNDARY ELEMENTS 

The variation of # and a#/an is assumed to be linear within each element. For N elements, 
equation (10) can be written as: 

The values of # and &$/an at any point of an element can be written in terms of their 
nodal values and interpolation functions F1 and F2 as: 

#(5).=FI#l+F242 

X 
where 5 is the dimensionless co-ordinate 5 = - (Figure 3), and: 

L/2 

Fl = f(1 + 5); F2 = $(1+ 5) 

Figure 3. Conventional linear element 

The singular point corresponding to a node i is located at any arbitrary distance from i and 
along the outward normal (Figure 4). Equation (12) for this singular point can now be 

Figure 4. Nan-conforming linear element 
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written as: 

or : 

where: 
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(17) 

That is, for each node an equation is set up taking into account the contributions made by 
the adjoining elements. This approach may give rise to problems mentioned in the ‘Introduc- 
tion’. To overcome these problems either the ‘double-node’ approach is followed along with 
a refined mesh near the points where there is a change in the nature of boundary conditions 
or as proposed in this paper, non-conforming (or discontinuous) linear elements may be 
employed whereby the freedoms of an element are not defined at the geometric nodes, i.e. at 
t; = k1 but at t; = .ti (Figure 5) .  The interpolation functions take the form: 

Fl=($-t;); F2=(4+5) (18) 
There are 2N ‘freedom points’ defined over the whole boundary of the domain and the 

two equations for any point i ,  similar to equation (16) can be written as: 

Node 
/ - I  

lode j + l  

Element j 
I 

‘j 

i f j + i/.+j 

2 

Figure 5. Location of singular point for linear element 



REGULAR BOUNDARY ELEMEWT hETHOD 245 

where: 

Equation set (19) produces a 2 N X 2 N  system of equations which can be solved to give the 
solution on the boundary. Once the boundary solution is generated, solution in the interior 
can be obtained using equation (9) where c' = 1. 

APPLICATIONS 

Inviscid laminar flow around a circular obstacle in a channel 

Consider the flow past an infinitely long cylinder positioned symmetrically between the 
two flat plates of infinite dimensions. We can choose the equivalent finite domain as shown in 
Figure 6 .  This is a typical fluid flow problem solved using the Finite Element Method with 55 
nodes and 80 elements" and 72 nodes and 110 elements." The problem has also been 
analysed using constant and linear boundary elements following the conventional Boundary 
Element Method.12 

Figure 6. Flow past a circular obstacle in a 
channel 

The governing equation for the problem is: 

a2+ a2+ -+--.,=O 
ax2  ay 

where + is the stream function. 
With properly specified boundary conditions it is possible to take only a quarter of the 

domain (Figure 7). In the stream function (+) formulation, these boundary conditions are 
easily determined. The axis of symmetry and the upper boundary are both streamlines. The 

JI-0 

Figure I .  Boundary conditions for quarter 
domain 
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A 

Conventional B.E.M. 

Regular B.E.M. 

with non- 
conforming elements 

a$ 1 

,, 2 IC-"-'--.X-.. 

Figure 8. Computed values of JI and a+/& along the boundary using Conventional and 
Regular Boundary Element Methods 

Conventional B.E.M 

- - - - - -  Regular B.E.M. 

Figure 8(a). Computed values of JI and aJI/an along the boundary using 
Conventional and Regular Boundary Element Methods, following the 

double-node approach 
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axis of symmetry is a streamline because there is no flow across that line. The boundary of 
the cyclinder is also a streamline for the same reason. The arbitrary numerical values for 
streamlines fromed by the axis of symmetry and the cylinder, and the upper boundary are 
taken as fcr = 0 and fcr = 2 respectively. 

The problem is solved using 32 linear boundary elements, and the boundary solutions thus 
obtained for ‘Conventional’ and ‘Regular’ Boundary Element Methods are compared in 
Figure 8. In the latter case non-conforming boundary elements have been employed. As is 
evident, the use of conforming elements tends to give good results for the fcr and 
functions along the boundary but there is a distortion of the value of a+/& near those 
corners in which the normal derivative can take two different values depending upon the side 
under consideration. No such problem arises in the case of discontinuous elements. How- 
ever, the problem can also be remedied by taking two nodes close to each other at the 
corners, one belonging to each side.12 This double-node approach has already been demon- 
strated using the ‘Regular method’ in Reference 3 by the authors and the results are 
reproduced in Figure 8(a) for the convenience of the reader. Streamline + = 1, inside the 
domain is also plotted (Figure 8) to illustrate the solution in the interior which agrees well for 
the two methods. 

It should be noted that for the ‘Regular Method’, these results correspond to the best 
position of the fundamental solution singularity, outside the domain and along the positive 
normal. This position was found to be one half the length of the element. 

lnviscid laminar flow in a channel past a disc 

Let + be the stream function to represent the flow in a channel and let it be at normal 
incidence to the disc, as shown in Figure 9. Only a quarter of the domain needs to be 

c 

Figure 9. Flow past a disc in a channel 

considered for analysis because of symmetry. The prescribed boundary conditions for the 
problem are shown in Figure 10. An infinite speed will be acquired by the stream at point 
‘O’, the edge of the plate, giving rise to a singularity in the mathematical ~olution.’~ The 

Figure 10. Boundary conditions for quarter 
domain 
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Conventionol B.E.M. 

Regular B.E.M. with non-conforming elements ---- ------ 

v aJI - (-1 
an 

Of0 1.0 2.0 3 .0  4.0 5.0 
.L 

Figure 11. Computed values of $I and W a n  along the boundary using Conventional and Regular 
Boundary Element Methods 

boundary of the quarter domain was divided into 32 linear elements with the same number 
of freedoms defined at the geometric nodes for continuous elements used in the Conven- 
tional Method and two freedoms over each discontinuous element employed in the case of 
the Regular Method. 

The boundary solutions obtained for the two methods are compared in Figure 11, whereas 
Figure ll(a) shows the boundary solutions obtained by using the two methods, following the 

Figure l l (a) .  Computed values of $I and a$I/an along the boundary using Conventional and Regular Boundary 
Element Methods, following the double-node approach 
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I 
I 

disc (50) 

Figure 12. Variation of velocities (a+/an) along the 
boundary of the disc (BO) against location of funda- 

mental solution singularity 

‘double-node’ approach. Streamline q5 = 1 is also plotted to illustrate the interior solutions. It 
should be noted that for the ‘Regular Method’ these results correspond to the best position 
of the fundamental solution singularity. A systematic study was undertaken to determine this 
position. It was observed that the quality of the solution deteriorated as the singularity was 
moved away from the domain of the problem. Best results were obtained with the singularity 
at one half the element length away from the element along the outward normal to the 
freedom node (Figure 12); but as shown in Figure 13, the interior solution is not affected 
much by changing this singularity location. 

Regular Singulority L / 8  
method with at 

I non-conforming 
elements I 

-1  

I method 
I 

-0.5 I 
I 
I 

\ I  
I 
I 

I X I  10 - Distonce oiong ‘xO’ 

Figure 13. Internal solution against location of fundamental solu- 
tions singularity 
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Conventional BEM 
7 i 

II __Rep@_E M 
6 

Figure 14. Quality of boundary solution gen- 
erated by Conventional and Regular (with 
non-conforming elements) Methods for differ- 
ent boundary meshes employed in the neigh- 

bourhood of singular point 

The quality of the solution generated by the two methods was also studied for different 
boundary meshes employed in the neighbourhood of the singular point (Figure 14). It has 
been shown that concentration of integration points around singularities is not a particular 
requirement when non-conforming elements are used but it may be necessary in the 
Conventional Method to avoid the quality of the solution being impaired even away from the 
singular points. 

CONCLUSIONS 
In this paper a ‘Regular Boundary Element Method’ has been presented and applied to 
harmonic fluid flow problems. The regular variant is obtained by locating the singular point 
of the fundamental solution outside the domain of the problem. 

This method has the following advantages over the Conventional Boundary Element 
Met hod. 

(a) The class of problems to which the Conventional Method may be applied is limited by 
the requirement that the singular boundary integrals do not diverge, the corresponding 
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limitation of the Regular Method is substantially weaker because the kernels are 
everywhere regular over the boundary. 

(b) Since no special attention is needed to handle singular kernels and the integrands are 
more slowly varying, the integrals in the regular method may be accurately determined 
at less computational cost than in the usual method. 

It is also shown that non-conforming boundary elements may be used to overcome the 
modelling difficulties at singular boundary points (corners) and at points where abrupt 
changes in boundary conditions occur. The solution obtained using continuous elements is 
poorer in the neighbourhood of these anomalous points than their counterparts and this 
degradation may not be localized. 
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